In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups.
A torus in a Lie group G is a compact, connected, abelian Lie subgroup of G (and therefore isomorphic to the standard torus Tn). A maximal torus is one which is maximal among such subgroups. That is, T is a maximal torus if for any other torus T′ containing T we have T = T′. Every torus is contained in a maximal torus simply by dimensional considerations. A noncompact Lie group need not have any nontrivial tori (e.g. Rn).
The dimension of a maximal torus in G is called the rank of G. The rank is well-defined since all maximal tori turn out to be conjugate. For semisimple groups the rank is equal to the number of nodes in the associated Dynkin diagram.
Contents |
The unitary group U(n) has as a maximal torus the subgroup of all diagonal matrices. That is,
T is clearly isomorphic to the product of n circles, so the unitary group U(n) has rank n. A maximal torus in the special unitary group SU(n) ⊂ U(n) is just the intersection of T and SU(n) which is a torus of dimension n − 1.
A maximal torus in special orthogonal group SO(2n) is a given by the set of all simultaneous rotations in n pairwise orthogonal 2-planes. This is also a maximal torus in the group SO(2n+1) where the action fixes the remaining direction. Therefore, both SO(2n) and SO(2n+1) have rank n. For example, in the rotation group SO(3) the maximal tori are given by rotations about a fixed axis.
The symplectic group Sp(n) has rank n. A maximal torus is given by the set of all diagonal matrices whose entries all lie in a fixed complex subalgebra of H.
Let G be a compact, connected Lie group and let be the Lie algebra of G.
Given a torus T (not necessarily maximal), the Weyl group of G with respect to T can be defined as the normalizer of T modulo the centralizer of T. That is, Fix a maximal torus in G; then the corresponding Weyl group is called the Weyl group of G (it depends up to isomorphism on the choice of T). The representation theory of G is essentially determined by T and W.